
How a protein searches for its specific site on DNA: The role of intersegment transfer

Tao Hu and B. I. Shklovskii
Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA

�Received 27 July 2007; published 9 November 2007�

Proteins are known to locate their specific targets on DNA up to two orders of magnitude faster than
predicted by the Smoluchowski three-dimensional diffusion rate. One of the mechanisms proposed to resolve
this discrepancy is termed “intersegment transfer.” Many proteins have two DNA binding sites and can transfer
from one DNA segment to another without dissociation to water. We calculate the target search rate for such
proteins in a dense globular DNA, taking into account intersegment transfer working in conjunction with DNA
motion and protein sliding along DNA. We show that intersegment transfer plays a very important role in cases
where the protein spends most of its time adsorbed on DNA.
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I. INTRODUCTION

The description of how proteins interact with specific sites
on DNA is of fundamental importance to molecular biology.
The effectiveness of a DNA enzyme depends entirely on its
ability to locate its target site quickly and reliably. It was
recognized long ago that the search by free diffusion through
three-dimensional �3D� solution is far too slow to account for
the observed speed of many biological processes and that
proteins somehow arrive at their target sites up to two orders
of magnitude faster than the 3D Smoluchowski rate �1,2�

Js = 4�D3bc , �1�

where b is the target radius and D3 and c are, respectively,
the diffusion coefficient and concentration of proteins in so-
lution. The idea to resolve this discrepancy goes back to
Delbrück �3�, who suggested that proteins may adsorb fairly
quickly onto a nonspecific random place on DNA and then
undergo 1D sliding along the DNA strand, resulting in an
increase of the search rate J above Js. Equivalently, we can
say that the average search time for the proteins t=1/J falls
below the Smoluchowski time ts=1/Js. Below, we character-
ize this rate enhancement by the acceleration ratio ts / t.

The field attracted intensive attention for many years. On
the theoretical front, the pioneering work by Berg, Winter,
and von Hippel �4� established the basis of current under-
standing in this field. They showed that 1D sliding on DNA
forms a kind of “antenna” around the target site and serves to
increase the effective size of the target. This large antenna
size replaces the actual target size b in Eq. �1�, resulting in a
much faster search rate. The Berg–Winter–von Hippel model
predicts that the rate at which proteins find their specific
target sites on DNA depends in a nonmonotonic fashion on
the ionic strength of the solution, which seems to be quali-
tatively consistent with experiments.

In recent years, the sliding mechanism has been revisited
several times �5,6�, but the question of how the protein
search time depends on DNA conformation was not ad-
dressed. It is well known that DNA is coiled at length scales
larger than its persistence length. When the coil cannot fit in
the volume available, e.g., in the nucleoid in a prokaryotic
cell, it must be a globule, as it is forced to fold back into the
volume after each contact with the walls. Locally, the glob-

ule resembles a transient network with a certain mesh size
�see Fig. 1�. A scaling theory was recently proposed to ac-
count for the role of different DNA conformations �7�. This
theory deals only with proteins with a single DNA binding
site and ignores the motion of DNA in solution. Our goal in
this paper is to relax these restrictions.

Berg, Winter, and von Hippel �4� pointed out that in ad-
dition to 1D sliding, proteins with two nonspecific DNA
binding sites may benefit from another facilitating mecha-
nism termed “intersegment transfer.” Indeed, such proteins
are capable of transiently binding to two DNA segments
when the segments are close in space, even if they are well
separated from each other along the DNA contour. The sub-
sequent segmental diffusion of DNA then disrupts these
double-bound states, resulting in the protein being trans-
ferred to a remote position on the DNA without net dissocia-
tion of protein into the water.

The existence of intersegment transfer in principle has
been confirmed by a number of well-designed in vitro experi-
ments �8–10�. These experiments measured the dissociation
rate of proteins from a prepared complex of the protein and a
short piece of specific DNA. The complex was placed in a
solution of short nonspecific DNA molecules, and the disso-
ciation rate was measured as a function of the concentration
of nonspecific DNA. All the proteins used in �8–10�—
namely, lac repressor �8�, glucocorticoid receptor DNA-
binding domain protein �9�, and human Hox-D9 home-

FIG. 1. �Color online� A DNA globule. The long DNA is forced
to return many times by the wall of a prokaryotic cell. On the right,
a blown-up view shows a typical region of the transient network at
a scale much smaller than the DNA persistence length p. This figure
represents a very dense case, where the nearest-neighbor distance
between DNA segments, each of length p, is shorter than p.
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odomain �10�—are believed to have two DNA binding sites
so that the protein-DNA complex can adsorb a second short
piece of DNA, allowing the protein to transiently form a
double-bound state with two DNA pieces. This double-bound
state breaks up quickly �faster than the dissociation of pro-
tein to water in the prepared protein-DNA complex�, and the
protein has a chance to be transferred to the newly adsorbed
DNA. As a result, the dissociation rate of the complex grows
linearly with the concentration of nonspecific DNA. This
phenomenon of inter-DNA transfer is essentially similar to
the intersegment transfer of proteins inside a single long
DNA strand. Direct observation of intersegment transfer was
also achieved by a scanning force microscopy study of the
translocation of RNA polymerase in E. coli �11�.

In this paper, we propose a scaling theory of the target
search time for proteins with two DNA binding sites, which
combines the effects of 3D diffusion, 1D sliding, interseg-
ment transfer, and DNA motion. Our main interest is the
search time for the biologically relevant case of globular
DNA. However, its complex geometrical properties com-
bined with the several mechanisms of protein motion make
this problem very complicated. Therefore, we start from a
relatively simple case—namely, the search time in a solution
of short, straight double-helix DNA molecules among which
only a small fraction carry the specific targets. In this situa-
tion we are able to include the effects of intersegment trans-
fer and establish connections with the in vitro experiments on
short DNA �8–10�. Our analysis of this case is detailed in
Sec. II, and a summary of the resulting scaling regimes is
shown in Fig. 3.

In Sec. III we apply the methods developed for short
DNA pieces to the case of a very dense DNA globule as
shown in Fig. 1. The acceleration rate ts / t is shown sche-
matically as the solid line in Fig. 2, plotted as a function of
y=exp�� /kBT�, where � is the nonspecific adsorption energy
of the protein to DNA. Experimentally, the value of y can be
controlled through the salt concentration of the solution,
since nonspecific absorbtion of proteins is controlled by
Coulomb interaction between negative DNA and the positive
patch on the protein surface and may be screened by salt
concentration. For comparison, we also plot the result of Ref.
�7�, which ignores DNA motion and intersegment transfer, as
a dashed line. In the latter case, the acceleration rate grows
first with y because protein binding to DNA increases the
antenna size; then, the acceleration rate decays when most of
the proteins are fruitlessly adsorbed far from the target �or, in
other words, every protein spends most of the time adsorbed

far away from the target�. Finally, the acceleration rate satu-
rates and comes to a very low plateau when the antenna
becomes as long as the DNA itself. Hence, when DNA mo-
tion and intersegment transfer are not accounted for, there is
a very strong deceleration at large ionic strength compared to
the Smoluchowski rate. With the help of intersegment trans-
fer, however, the acceleration rate saturates at a much higher
level �larger than unity� because adsorbed proteins become
much more effective in target search.

In Sec. IV, we conclude with a discussion of the applica-
bility of our model and a comparison to the previous theory
�4�.

II. SIMPLE CASE: DNA IS SHORT

A. Model and approach

We assume that within some volume v a number of short,
rigid �double-helix� DNA molecules of length l are confined,
among which only one piece of DNA contains a target site of
size b. We call this molecule the specific DNA while others
are called nonspecific DNA. The system considered here is
equivalent to an in vitro experiment with specific DNA con-
centration 1/v and much larger nonspecific DNA concentra-
tion N.

We further assume that a protein can be adsorbed nonspe-
cifically on DNA and that the nonspecific adsorption energy
�, or the corresponding constant y=exp�� /kBT�, is the same
everywhere on the DNA and does not depend on the DNA
sequence. The only exception is at the target site on the spe-
cific DNA, where the binding energy is much larger. We
assume that every protein has two sites capable of binding to
DNA, so that the protein can be bound to two DNA mol-
ecules at the same time.

A nonspecifically bound protein is assumed to diffuse
�slide� along DNA with the diffusion coefficient D1, while
protein dissolved in the surrounding water diffuses in 3D
with diffusion coefficient D3. In the simplest version of the
theory, we assume D1=D3=D. While the protein is diffusing,
the DNA molecule itself diffuses through water with diffu-
sion coefficient Dt. Following the Stokes-Einstein relation,
Dt�D�b / l�, where b is the size of the protein.

The quantity of our interest is the mean time t needed for
the target site to be found by a protein. We want to look at
the situation in terms of a single protein diffusing to its tar-
get. In this view, one should imagine that a protein molecule
is initially introduced into a random place within volume v
�thus the protein concentration c is 1 /v� and then ask how
fast the protein diffuses to its target site on the specific DNA.
In order to compare the predicted time t to the Smolu-
chowski time ts=1/Js=1/4�Dcb, we shall mainly look at
the acceleration rate

ts

t
=

1

t�4�Dcb�
�

v
tDb

. �2�

We note that in our scaling theory we drop away both all
numerical factors and all logarithmic correction factors,
which exist in the problem because it deals with strongly
elongated cylinders. In this context, we will use the symbol

1 y

1

t /ts

FIG. 2. Schematic dependences of the acceleration rate on the
adsorption strength y, with �solid line� or without �dashed line�
DNA motion and intersegment transfer. Both the acceleration rate
ts / t and y are given in logarithmic scale.
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“�” to mean “equal up to a numerical coefficient of order
1,” while the symbols � and � mean � and �, respec-
tively. Along with these simplifications, we also make sev-
eral assumptions driven by pure desire to make formulas
simpler and to clarify major physical ideas. We assume that
all “microscopic” length scales are of the same order;
namely, the target size b, protein diameter, double helical
DNA diameter, and the distance from DNA at which nonspe-
cific absorbtion takes place are all considered to be roughly
equal to b.

B. Search time

Let us imagine for a moment that there is no intersegment
transfer, as is the case for a protein with only one nonspecific
DNA binding site. One protein is introduced into the volume
v. The ensuing search process for the given single protein
consists of tours of 1D sliding along the nonspecific DNA
followed by 3D diffusion in water, followed by 1D sliding,
and so on. On its way to the target on the specific DNA, the
protein will go through many adsorption and desorption
cycles, and therefore the ratio of the typical time for the
protein to be adsorbed, ta, and desorbed, td, in a cycle should
simply follow the equilibrium Boltzmann statistics:

ta

td
� y�Nlb2� . �3�

The diffusion time in water per cycle, td, can be estimated as
the time a protein needs to find a DNA molecule and bind
nonspecifically to it. Using Eq. �1�, td�1/ �1/v�D�Nv�l
�1/NDl, where 1/v stands for the protein concentration c
and Nv is the number of DNA molecules in the volume v. As
a result ta� tdy�Nlb2��y�b2 /D�.

Let x be the average length of DNA searched by the pro-
tein per cycle. Then, in order to find the specific site �target�
among the total Nvl /b sites on DNA, the protein should
perform such searching cycles roughly Nvl /x times. There-
fore the search time is given by

t �
Nvl

x
�ta + td� =

v
Dx

�1 + yNlb2� . �4�

Plugging t into Eq. �2�, we obtain the acceleration rate

ts

t
�

1

1 + yNlb2

x

b
. �5�

We can consider two limiting cases to find expressions for x.
At y� l2 /b2, x��Dta�1/2�y1/2b is just the sliding distance of
the protein on one DNA molecule, while at y� l2 /b2, x is
limited to the total length of DNA l. There are also two
limiting cases for the denominator of Eq. �5�. When y is
relatively small so that y�1/Nlb2—i.e., the protein spends
most of its time desorbed in water—the first term dominates.
At y�1/Nlb2, the protein spends most of its time adsorbed
and the second term dominates. As a result, we obtain four
scaling regimes shown in the phase diagram of Fig. 3�a�. We
terminate the phase diagram at the concentration Nl3= l /b
because in a denser system liquid crystalline nematic order-
ing of DNA molecules becomes likely. The dependences of
the acceleration rate on y for a semidilute solution of short
DNA pieces are plotted in Fig. 4�a�. The search rate is shown

Nl31 l/b

y=1/N l b
2 3 3

y=1/Nb3

y=1/Nlb2

(Nlb )2 -1/3
Nl3

y=(l/b)2

y

(l/b)1/2Nl31 l/b

y=1/Nlb2

y1/2

l/b

1/yNb3

1/Nlb y2 1/2

y=(l/b)2

y

1/yNb3

l/b

y1/2

1/Nlb y2 1/2

(a) (b)

1

y=(Nlb )2 -4/3

FIG. 3. “Phase diagram” for the acceleration
rate ts / t in the plane of y and Nl3, where l is held
constant. Both the y and Nl3 axes are in the loga-
rithmic scale. The ratio ts / t is shown in black on
the background of each region. �a� Shows scaling
dependences without inter-DNA transfer; �b�
gives results with inter-DNA transfer, where ts / t
saturates at large y.
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FIG. 4. Schematic dependences of acceleration rate on y for a
semidilute �Nl3�1� solution of short DNA pieces �a� without inter
DNA transfer; �b� and �c� with inter DNA transfer. The fraction next
to each curve shows its slope �the power dependence of ts / t on y�.
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to increase at first due to the increase of x and then decrease
due to the fact that at large y the protein spends most of the
time adsorbed on nonspecific DNA molecules, which slows
down the diffusion to the target.

Now let us move on to the case of a protein with two
DNA binding sites. When a piece of DNA with an adsorbed
protein collides with another DNA molecule, the protein has
some probability to move directly to the new molecule. If the
inter-DNA transfer is faster than the dissociation of protein
into water—i.e., if the average time �t required for a protein
to be transferred from one piece of DNA to another is shorter
than the adsorption time ta—then the protein can explore
several DNA molecules during ta. As a result, the protein can
visit a large number of different sites during adsorption and
the efficiency of 1D search on DNA is greatly enhanced. We
find below that at large y when �t� ta and inter-DNA transfer
dominates, the protein already spends most of the time ad-
sorbed and ta� td. Therefore we neglect the time spent in
water td and redefine x /b as the number of different sites
explored on the same DNA during �t. The search time can
then be estimated as

t �
Nvl

x
�t, �6�

so that we obtain the acceleration rate

ts

t
�

x

NDlb�t
. �7�

The results are shown in the diagram in Fig. 3�b�. At large y
the acceleration rate stops decreasing with y and saturates.

We begin explaining our results by calculating the most
important quantity of our theory: �t. For a dilute solution of
DNA molecules with Nl3�1, one can use Eq. �1� to find the
time for a given DNA molecule to enter the spherical region
occupied by another piece of DNA by replacing D3 and b by
the DNA diffusion coefficient D�b / l� and the length l. The
result is 1 /D�b / l�Nl=1/DNb. When the given DNA mol-
ecule enters the sphere of another molecule and diffuses over
distance l, on average every site on the DNA has a chance to
collide with the second DNA before it leaves the sphere. As
a result, a protein adsorbed on one DNA can essentially al-
ways get transferred to the new one during a collision. Since
in a dilute solution the diffusion time to find such a sphere
containing a second DNA piece, 1 /DNb, is larger than the
diffusion time within the sphere, l2 /D�b / l�� l3 /Db, the
transfer waiting time �t is the order of 1 /DNb. Because
D�t� l2, the protein searches l /b different sites during �t and
x� l. Using Eq. �6�, we obtain the search time

t �
Nvl

l
�t �

v
Db

� ts. �8�

When Nl3�1, the spheres containing individual DNA mol-
ecules strongly overlap. In such a semidilute solution, the
first collision for a given DNA molecule happens when it
diffuses over the nearest-neighbor distance rp. One can find
rp by constructing an imaginary cylinder with radius rp
around each DNA molecule, where the length of the mol-
ecule serves as the cylinder’s axis. Because the excluded

volume of a cylinder is �l2rp, the radius rp should satisfy
Nl2rp�1 and thus scale as 1/Nl2. During time

� �
rp

2

D�b/l�
�

1

DN2l3b
, �9�

the DNA diffuses over a distance rp, giving every site on
some segment of the DNA of length rp the opportunity to
collide once with the nearest-neighboring DNA �see Fig. 5�.
After time �, the diffusing DNA and its neighbors have
moved around enough that the nearest-neighboring region
�shown by a dashed circle� may be considered to have shifted
to a random place on the DNA.

Let us assume that the protein has just arrived at some
place on the given DNA molecule. In order to be transferred
to another DNA within time �, the protein must reach the
segment of length rp �see Fig. 5� during �. Since the typical
distance between the adsorbed protein and the nearest-
neighboring region is just proportional to the DNA length l,
the protein will change molecules during � when D�� l2, or
Nl3� �l /b�1/2. Therefore �t�� and we obtain the search time

t � Nv�t �
1

Nl3

v
Db

�
ts

Nl3 , �10�

from which we can see that the search rate saturates Nl3

times faster than the Smoluchowski rate, and that the accel-
eration rate grows with DNA concentration since denser so-
lution makes inter-DNA transfer easier.

When Nl3� �l /b�1/2, the 1D sliding distance of protein on
a single DNA molecule during � is x��D��1/2� l. Therefore,
the probability for the protein to reach the nearest-
neighboring region on the DNA during � is x / l
��l /b�1/2 /Nl3�1. In this case the transfer waiting time �t

��, and it should be calculated self-consistently. During �t
the sliding distance x of the protein is �D�t�1/2, so the prob-
ability for the protein to reach a specified nearest-
neighboring region is on the order of �D�t�1/2 / l. Since the
nearest-neighboring region changes to a random place on the

rp

rp

FIG. 5. �Color online� Collision of a DNA molecule with its
nearest neighbor at distance rp �other DNA molecules are not
shown�.
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DNA after �, there are �t /� such regions during time �.
Therefore the probability for the protein to reach any one of
these regions and then get transferred should satisfy

�D�t�1/2

l

�t

�
� 1. �11�

As a result,

�t �
1

D�N2l2b�2/3 , �12�

and the search time is given by

t �
Nvl

�D�t�1/2�t � �Nlb2�1/3 v
Db

� �Nlb2�1/3ts. �13�

The equations for the crossover lines at large y, shown in
Fig. 3�b�, are obtained by equating �t to ta. This condition
determines the range of parameters for which intersegment
transfer takes over, i.e., when the time it takes the protein to
transfer between DNA molecules is much shorter than the
time the protein spends adsorbed on the DNA then we can
say that intersegment transfer is the dominant mechanism.
The dependences of the acceleration rate on y for semidilute
DNA concentrations with Nl3�1 are schematically plotted
in Figs. 4�b� and 4�c�. For the purpose of comparison, we
also show the dependences for proteins with a single binding
site in Fig. 4�a�.

A new feature shown by Figs. 4�b� and 4�c� is that, for
proteins with two DNA binding sites, inter-DNA transfer
stops the search rate from decreasing and causes it to saturate
at large y. It can be shown from Eqs. �8�, �10�, and �13� that
the acceleration rate is constant and �1 when the solution is
dilute and y is large. The acceleration rate begins to grow as
the concentration is increased past Nl3�1, peaking when
Nl3��l /b�1/2 and achieving a maximum value of �l /b�1/2.
After the peak, it decreases again and reaches �l /b�1/3 when
Nl3� l /b.

Before we move on to the next section, we should empha-
size that in our calculation we have completely neglected the
energy barrier associated with breaking the double-bound
state. We have assumed the barrier to be so small that the
lifetime of the double-bound state is a small correction to the

above calculated �t. The search time we have found is there-
fore the lower limit which can be achieved with the help of
intersegment transfer. In Sec. IV, we will return to this issue
in more detail.

C. Dissociation rate

Since in experiments �8–10� the role of intersegment is
inferred from measuring the dissociation rate of the prepared
protein-DNA complex, in this section we calculate this rate
for a protein adsorbed on a nonspecific piece of DNA disso-
ciating to other nonspecific DNA pieces via inter-DNA
transfer.1

The calculation is quite straightforward and the results are
presented in the phase diagram of Fig. 6. The apparent dis-
sociation rate is just 1 / ta+1/�t, where each term represents a
possible relaxation process undergone by the adsorbed pro-
tein: either dissociation to water or intersegment transfer to
another piece of DNA. The faster process dominates the rate.
Since the dissociation rate to water decreases with the ad-
sorption strength y and the intersegment transfer rate grows
with the nonspecific DNA concentration, intersegment trans-
fer dominates the apparent dissociation rate at relatively
large y and N. We find that the enhanced dissociation rate
grows linearly with nonspecific DNA concentration N when
the solution is dilute, in agreement with the experiments
�8–10�. In semidilute solution, however, the dissociation rate
has power law dependence on N, with power equal to either
2 or 4/3.

III. DNA IS A GLOBULE

After exploring the particular role of DNA motion and
protein intersegment transfer for short DNA pieces, we are
well prepared to generalize the above results to the more
realistic case of globular DNA �see Fig. 1�. We focus here on
cases with large y, where the mechanism of intersegment
transfer is important. The results for acceleration rate at

1Our model serves as a simple generalization of experimental sys-
tems where the protein is specifically adsorbed to its target on the
DNA in the complex and the DNA free in solution can be specific
or nonspecific �8–10�. We argue that this generalization does not
change the main feature of the problem, which is determined by the
frequency at which the free DNA molecules collide with the
protein-DNA complex. The difference lies in the transfer probabil-
ity per collision. On the nonspecific DNA, the protein can slide
freely. In contrast, protein on the specific DNA spends most of the
time adsorbed to its target. Thus, to experience a transfer the com-
plex should collide with another piece of DNA exactly at the posi-
tion of target, which results in smaller transfer probability. How-
ever, the specifically adsorbed protein can first slide into nonspecific
sites and then dissociate into the bulk solution or transfer to other
DNA molecules �15�. In this way the decreased transfer probability
is somewhat compensated and it becomes closer to the case of
dissociation from nonspecific DNA. More importantly, the process
of target search involves the protein making direct transfers be-
tween nonspecific segments of DNA, so we prefer to study the
dissociation rate for this case.

y

Nl31 l/b

DN l b2 3
y=1/Nb3

l
b

2
2

l
b

4/3

4/3

D/b y2

DNb

y=1/N l b
2 3 3

y=(Nlb )2 - 4/3

D(Nl) b4/3 2/3

(l/b)1/2

FIG. 6. “Phase diagram” for the dissociation rate under the in-
fluence of inter DNA transfer.
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small y, where intersegment transfer does not help much, can
be found in Ref. �7�.

We assume that within some volume v, a double helical
DNA with contour length L and persistence length p�b is
confined. We disregard the excluded volume of DNA, con-
sidering the DNA coil to be Gaussian and not a swollen coil,
described by the Flory index 3/5. This is a reasonable ap-
proximation for most realistic cases. Indeed, for many real
DNA molecules such as �-DNA, it is justified because of the
large persistence length-to-diameter ratio of the double helix:
excluded volume in the coil remains unimportant up to DNA
length about L� p3 /b2 �as much as 100 000 base pairs under
normal ionic conditions�. When the DNA is very long for a
given volume, specifically, when the Gaussian coil size
�Lp�1/2�v1/3, it cannot remain a Gaussian coil, but must fold
back to make several smaller overlapping coils. In other
words, it must be a globule which locally resembles a tran-
sient network.

In order to simplify our calculation, we can approximate
the DNA as a series of freely-jointed straight segments
�rods�, each with persistence length p. We further restrict our
study to a globule so dense that the spheres containing each
rod strongly overlap �Fig. 1�. Except for the connectivity, the
globule is quite similar to a semidilute solution of short
straight DNA pieces of length p and concentration N
= �L / p� /v satisfying Np3�1. In this case the diffusion dis-
tance rp for a given rod to experience its first collision with
another rod, which may be close in space but far removed
along the DNA contour, is shorter than its length p. As a
result, one can disregard the correlation of motion between
connected rods and treat the motion of each rod over the
short distance rp separately as a normal diffusion process
with diffusion coefficient D�b / p�.

Let us first look at a simple case where the 1D sliding
distance x for a protein on a single DNA rod is shorter than
the chain length p. As before, we consider x to be the dis-
tance traveled by the protein within a time �t, the average
waiting time before a protein is transferred from one DNA
rod to another, uncorrelated rod. In this situation, the protein
does not feel the connection between rods. Therefore, we can
simply use the result for short DNA pieces, replacing the
length l by p and using the rod concentration N= �L / p� /v.
Then Eq. �13� gives the search time

t � �Npb2�1/3�v/Db� � �Lb2/v�1/3ts. �14�

From Eq. �12�, we find �t�1/D�N2p2b�2/3 and thus x
��D�t�1/2�1/ �N2p2b�1/3. So the condition x� p is fulfilled
when Np3� �p /b�1/2 or L� �v /b2��b / p�3/2. Furthermore, to
avoid the liquid crystalline nematic ordering of DNA chains,
we assume that Np3� p /b or L�v / pb.

When the concentration of DNA rods is small enough that
it falls within the range 1�Np3� �p /b�1/2, the separation
between DNA rods becomes large. Therefore, the time be-
tween collisions increases. As a result, the transfer waiting
time �t grows and the 1D sliding distance of the protein x
becomes larger than p. In this case, one should be careful in
calculating the DNA diffusion distance that results in the first
collision between DNA rods. It is no longer equal to the

nearest-neighbor distance rp�1/Np2 between DNA rods of
length p. To find this distance, let us concentrate on the con-
tinuous piece of length x� p, which spans several rods. The
shortest distance from this piece of DNA to another similar
piece is realized at only one of its constituent rods. The first
collision that could result in transfer of the protein happens
only when this particular rod diffuses over the x-dependent
nearest-neighbor distance r�x��rpp /x�1/Npx. During time
��x��r2�x� /D�b / p�, on average each DNA piece of length x
experiences a collision and the protein slides a distance x
across the DNA. Thus, the waiting time for a protein to be
transferred to another, uncorrelated DNA piece �t���x�
�1/DN2x2pb should be equal to the 1D sliding time x2 /D of
the protein on a single piece. This self-consistent calculation
gives x��1/Np�1/2�p /b�1/4 and �t��1/DNp��p /b�1/2. We
therefore obtain the search time

t �
L

x
�t � �Np3�1/2�b

p
�3/4 v

Db
� �Lb2

v
�1/2� p

b
�1/4

ts.

�15�

As explained in Ref. �7�, without intersegment transfer, large
values of y result in the protein spending most of its time
adsorbed on DNA far from the target site. The result is that
the search time saturates at L2 /D��L2b /v�ts, which is a
huge deceleration compared to the Smoluchowski time.
From Eqs. �14� and �15�, one can easily find that at large y
the search time is greatly reduced below ts by the combina-
tion of 1D sliding, intersegment transfer, and DNA motion.
Correspondingly, the acceleration rate is enhanced and can
be larger than 1, as shown by the solid line in Fig. 2.

We put in numbers to compare the search times at large
nonspecific adsorption strength y corresponding to the two
plateaus shown in Fig. 2. Equations �14� and �15� work at
Lp2�v where DNA is a dense globule. A simple estimate
using a typical procaryotic cell size of around 1 �m, a ge-
nome of several million base pairs, and a persistence length
p of about 150 base pairs shows this condition is possible.
For the lower plateau in Fig. 2—or, in other words, without
intersegment transfer—the protein is forced to do a pure 1D
search on DNA. Assuming the protein diffuses along DNA as
fast as it does in water with diffusion coefficient D
�10−7 cm2/s, the search time L2 /D is around 1000 s.

Let us now switch to the higher plateau in Fig. 2 and
estimate the effect of intersegment transfer. For simplicity,
we pick a special case where the 1D sliding distance of pro-
tein on DNA between intersegment transfers is the order of
persistence length p. Then, at x� p, Eqs. �14� and �15� yield
the same formula t�Lp /D. This gives the search time
greatly reduced to around 1–10 s. Thus, the search with in-
tersegment transfer can be two orders faster. As shown in
Fig. 2, at smaller y, the acceleration by intersegment transfer
is not as large, but still considerable.

The above results remain qualitatively correct for a
sparser globule with p /v1/3�Np3�1 or v2/3 / p�L�v / p2,
where the typical mesh size of the transient network is longer
than p and thus the piece of DNA inside each mesh is not
straight as shown in Fig. 1, but rather a small Gaussian coil.
To fully account for this kind of geometry, however, one
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should consider a more complicated correlated segmental
diffusion of DNA, and this is beyond the scope of the current
paper.

Until now, we assumed that D1=D3=D, where D1 and D3
are the diffusion coefficients of protein on DNA and in water,
respectively. In fact, the random sequence of DNA and the
resulting sequence-dependent nonspecific adsorption energy
most likely produce D1�D3. To illustrate the role of 1D
sliding in conjunction with intersegment transfer, we fix D3
=D and calculate the acceleration rate for various values of
D1 following the methods explained above. The results for
large y, where the intersegment transfer plays an important
role, are shown in the plane of D1 /D and Np3 in Fig. 7. The
dashed line corresponds to D1=D3=D. We find that the ac-
celeration rate grows as �D1 /D�S with the index S increasing
from 1/2 to 1.

IV. DISCUSSION

In our theory, we completely neglect the effect of the
energy barrier �� associated with breaking the double-bound
state and reverting to a single-bound state. Our results are
therefore an upper estimate of the effect of intersegment
transfer. On the other hand, a naive guess of the barrier
height is ��=�, since to break one of the two contacts the
protein has to pay the adsorption energy per binding site on
one side. If this were true, the protein would be trapped in
the double-bound state for the adsorption time ta, and there-
fore the inter-DNA transfer could not do better job in accel-
erating the dissociation of the protein from the protein-DNA
complex than desorption into water. As a result, adding DNA
into the solution of a protein-DNA complex would not in-
crease the dissociation rate of the protein, which clearly con-
tradicts the in vitro experiments on various proteins and
DNA molecules �8–10�. This suggests that in the double-
bound state, the binding strength per binding site, ����,
which could be a result of the excluded volume of close
DNA molecules or the Coulomb repulsion between them.

The experiment �8� showed that the dissociation rate in-
creases linearly with the nonspecific DNA concentration and
saturates at large concentrations. This implies that at small

DNA concentration, the dissociation rate is limited by the
diffusion of nonspecific DNA molecules and the resulting
collisions that induce inter-DNA transfer. As the DNA con-
centration is increased, the energy barrier for releasing the
protein from the double-bound state becomes the bottleneck
of the dissociation. Since the lifetime of the double-bound
state does not depend on the nonspecific DNA concentration,
the dissociation rate saturates. Having ���� in mind, one
can show that our theory is valid if the transfer waiting time
�t is larger than the lifetime of the double-bound state. We
can estimate this lifetime as the product of the characteristic
time scale b2 /D and the binding strength per site in the
double-bound state y��exp��� /kBT�. Thus our theory works
when y��b2 /D���t. When y��b2 /D���t, our main idea is
still correct; however, one should replace �t by the lifetime of
the double-bound state �b2 /D�y� and repeat a similar analy-
sis. The acceleration rate will be diminished as a result, but
will remain much larger than in the case without interseg-
ment transfer.

The above discussion of �� assumes that the double-bound
state does not affect the equilibrium Boltzmann statistics
represented by Eq. �3�. This places an additional restriction
on ��. The energy of the double-bound state is 2��. If one
were to take a snapshot of the solution of short DNA pieces
at a given time, the number of DNA contacts �where two
DNA collide� per DNA strand is on the order of Nl2b,
where l2b represents the excluded volume of a rodlike
DNA. Then the limitation on y� can be expressed as
exp�2�� /kBT��Nl2b��b3��ylb2 or �y��2�y /Nlb2.

Let us now compare our work with the treatment of inter-
segment transfer in Ref. �4�. First, Berg, Winter, and von
Hippel addressed only a Gaussian coil of DNA, while we
concentrate on the case of a dense globule. Second, while
our work combines both mechanisms of 1D sliding and in-
tersegment transfer, the work in Ref. �4� treats them sepa-
rately. Neglecting the mechanism of protein sliding in a de-
scription of intersegment transfer results in a huge
overestimation of the collision time � and the subsequent
transfer time �t. One can see from Fig. 7 that if the protein
cannot move on DNA, the acceleration rate is b / p, which is
much smaller than the acceleration rate at D1=D3=D.
Equivalently, neglecting intersegment transfer results in
overestimation of the sliding time and distance. The large
sliding distances estimated neglecting transfer make sliding
seem much more important than it is likely to be, when
transfer is available as a competing mechanism. In spite of
these important quantitative differences, the main qualitative
conclusion—that intersegment transfer is important only at
large y and leads to saturation of the acceleration rate at a
much higher level than does 1D sliding alone—is the same
in both papers.

Finally, we note that our theory can be easily adapted to
study the effective diffusion rate of a protein through a solu-
tion of polymers like DNA. This problem was studied in
Refs. �12�, assuming D1=0. Following the ideas of our pa-
per, one can expand on this study to account for the “con-
structive interference” of 1D sliding and intersegment trans-
fer of protein, which was not addressed in Ref. �12�. As with
target search, intersegment transfer enhances the macro-
scopic diffusion coefficient of proteins at large y, where the
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FIG. 7. �Color online� “Phase diagram” for the acceleration rate
at large y on globular DNA, where the intersegment transfer plays
an important role in the target search.
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protein spends most of its time adsorbed on DNA. We can
consider a solution of short DNA molecules, where without
intersegment transfer the effective diffusion coefficient of the
protein is decreased by nonspecific adsorption to DNA and
eventually saturates at the DNA diffusion coefficient D�b / l�.
In a dilute solution, intersegment transfer does not assist the
macroscopic diffusion of proteins, since each DNA molecule
is far removed from other molecules and therefore the mac-
roscopic displacement of protein is determined mainly by the
motion of the DNA. In a semidilute solution, however, where
1�Nl3� l /b, 1D sliding on DNA becomes important. When
1�Nl3� �l /b�1/2, D�t� l2 and the 1D sliding distance of
protein during time �t is limited to the length of DNA, l. In
this case, �t��. Using Eq. �6�, the effective diffusion coef-
ficient is obtained as l2 /�t�N2l6D�b / l�. At higher densities
when �l /b�1/2�Nl3� l /b, D�t� l2. As a result, the nonspe-
cific adsorption of protein on DNA does not hinder the dif-
fusion of protein at all and the macroscopic diffusion coeffi-
cient is just D. For D1�D3, a similar analysis can be
performed.

One further application of our theory is to the problem of
dynamic �stirred� percolation, e.g., the conductivity of well-
conducting wires in some insulating liquid. It is well known
that if the wires are randomly frozen in the liquid, the con-
ductivity vanishes below the percolation threshold �13�.
However, because of the diffusion of wires in the liquid, the
charge carriers are not trapped within finite clusters of wires.
Instead, they can hop from one wire to another when the
wires approach close to each other. This results in a finite
conductivity below the percolation threshold �14�. For such
systems, one can find the macroscopic diffusion coefficient
of the charge carriers and then map it to the effective con-
ductivity of the system.
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